电子元器件解析—电阻

  新闻资讯     |      2024-02-17 04:04

  电子元器件解析—电阻之一,了解电阻的各方面特性对正确选用合适的电阻很有帮助。本文总结了关于电阻的各个性能参数,包括电阻的标称值、精度、温度系数、耐压、封装与功率;总结了电阻的分类,有多种分类依据,包括按封装分类。按功能分类。按材料分类等;最后总结了

  物体对电流的阻碍作用称为电阻。电阻器是对电流有阻焊作用的器件,也简称电阻,下文中所有的电阻均指的是电阻器,而非某物体的电阻。

  电阻,Resistor,符号R,单位为Ω(欧姆)。欧姆定律描述了电阻两端电压U,流过电流I与电阻阻值R的关系:

  电阻原理图符号如下图所示,建议使用中国国家标准(GB4728.5 - 2018)中推荐的画法。

  电阻指E6、E12、E24、E48、E96、E192这几个系列,由IEC发布的国际标准确定,电阻厂家都照此生产。

  可见,1%精度的E96电阻并不能包含1~10欧姆所有的阻值,相邻阻值范围没有重合,中间是有空缺的。这也很好理解,E96是将10分成了96份,而1%精度要想完全表示10需要100份,中间必然是有空缺的。在实际应用中电阻值差1%通常没有影响,所以也没有必要把所有阻值包含进去。

  1%精度电阻通常能应对大多数应用场合,因此选用率最大,厂家生成规模也最大,这使得1%精度电阻很多时候反而比5%精度电阻更便宜,所以,1%精度电阻是最常用的。

  注意,E96电阻都是1%精度的,但1%精度电阻并不都是E96系列的。许多常用阻值并不属于E96系列,像我们常用的3.3k,4.7k,5.1k,6.8k虽然是E24的标称值,但同样有1%精度的电阻。如下图所示,6.8k 1%精度的电阻。

  其实,6.81k的E96标称电阻应能完全替代6.8k 1%精度的电阻,但库存销量却远远不及,这是因为最初受限于电阻生产工艺水平,E24系列才是最流行的,选电阻值的习惯也慢慢形成了,即使现在1%精度工艺已经成熟了,E96也慢慢流行起来,但一些习惯还是保留了下来,厂家也根据市场的反馈加大那些常用阻值的产量,这就是一个历史和习惯反馈市场的现象。

  如果电阻两端电压超过耐压值,电阻就会被击穿。击穿后阻值就会显著减小甚至为0,但要注意,电阻两端的电压也决定了电阻的功率,对于阻值较小、封装较小的电阻,两端电压的升高会导致功率先超过限值,从而使得电阻发热烧毁,这时电阻表现为断路。

  关于贴片厚膜电阻封装与耐压的关系如2.4节中的图所示,注意,表中所示的为一般水平,不同厂家,不同系列的电阻会有一些区别。

  电阻器的额定功率:指电阻在正常气候条件下(如大气压、环境温度等),长时间连续安全工作可耗散或可承受的最大功率。一般我们取70℃静止空气中为额定功率的最大工作温度点,电阻额定功率记为P70。电阻实际使用时,需要留有一定的功率余量,建议为额定功率的一半。

  可分为电流采样电阻、负载电阻/功率电阻、NTC热敏电阻、PTC热敏电阻、压敏电阻光敏电阻等,

  电流采样电阻:一般用来连接电流输出型传感器,将电流信号转变为电压信号,为满足测量精度并使电压在合适的范围内,电流采样电阻一般选择高精度(至少是1%精度),低温漂(温度系数小),阻值较小的电阻。

  负载电阻/功率电阻:一般用作电源输出的负载,流过较大的电流,这种电阻的封装一般很大(偏于散热),允许高温使用,对精度的要求不高。

  NTC热敏电阻:Negetive Temperature Coefficient,负温度系数,NTC热敏电阻指的是阻值随温度上升而下降的一类电阻,一般用作温度采集电路中,作为温度传感器。

  PTC热敏电阻:Positive Temperature Coefficient,正温度系数,当超过一定温度时,PTC电阻的阻值随温度升高呈阶跃型增大,可用作过流/过热保护,保护原理是:电流变大 ->

  温度升高 ->

  阻值变大 ->

  电流减小,像自恢复保险丝就是PTC电阻,它正常工作时阻值很小等同于短路,当电流增大时阻值快速增大等同于短路;也可用作恒温加热器,PTC电阻具有自动恒温的特点,当PTC电阻两端电压保持不变时,温度升高 ->

  电阻变大,电流减小 ->

  温度降低 ->

  电阻变小,电流增大 ->

  温度升高,所以电阻会保持恒温;功能。

  压敏电阻:是一种具有非线性伏安特性的电阻器件,主要用于在电路承受过压时进行电压钳位,吸收多余的电流以保护敏感器件。英文名称叫“Voltage Dependent Resistor”简写为“VDR”。

  光敏电阻:其工作原理是基于内光电效应。光照愈强,阻值就愈低,随着光照强度的升高,电阻值迅速降低,亮电阻值可小至1KΩ以下。光敏电阻对光线十分敏感,其在无光照时,呈高阻状态,暗电阻一般可达1.5MΩ。

  厚膜电阻与薄膜电阻的特征在于陶瓷基底上的电阻层,薄膜的厚度约为0.1um甚至更小,厚膜的厚度约为薄膜的几千倍。我们常用的贴片电阻,绝大部分都是厚膜电阻。厚度电阻价格低廉,但在一些性能表现上相对薄膜稍差,如精度,温度系数,噪声性能等。

  碳膜电阻:又称为碳薄膜电阻,是最早期也最普遍使用的电阻器,利用真空喷涂技术在瓷棒上面喷涂一层碳膜。缺点是精度较差,一般为5%;温漂大,一般大于300PPM,优点是价格低廉。现在一般只在低端电子产品和一些早期设计中使用碳膜电阻,之前的很多应用场景被性能更好的金属膜电阻替代了。

  金属膜电阻:又称金属薄膜电阻,制作工艺与碳膜电阻基本一样,只是将碳膜改为金属膜。优点是精度较好,一般为1%;温漂小,一般为50PPM;缺点是价格相对碳膜贵,但也很便宜了。像PCB上直插的电阻基本都是金属膜电阻,广泛应用于工业电脑、仪表、航空等各个领域。

  金属氧化物膜电阻:又称金属氧化物薄膜电阻,它是利用高温燃烧技术于高热传导的瓷棒上面烧附一层金属氧化膜(如氧化锌),抗氧化性好,耐热冲击,适合长期工作在高温环境中,而精度,温漂等性能都不如金属膜电阻。

  碳膜电阻一般为,金属膜电阻一般为蓝色,金属氧化物膜电阻一般为灰色且表面是暗光的,没有碳膜和金属膜那么亮。

  绕线电阻是固定电阻的一种。线绕电阻器是用电阻丝绕在绝缘骨架上构成的。电阻丝一般采用具有一定电阻率的镍铬、锰铜等合金制成。绝缘骨架是由陶瓷、塑料、涂覆绝缘层的金属等材料制成管形、扁形等各种形状。

  绕线电阻器的优点:精度极高,工作时噪声小、稳定可靠,温度系数小,能承受高温,在环境温度170℃下仍能正常工作。

  绕线电阻器的缺点:体积大、阻值较低,大多在100kΩ以下PG电子最新网站入口。另外,由于结构上的原因,其分布电容和电感系数都比较大,不能在高频电路中使用。

  在小功率场合,绕线电阻几乎都可以被金属膜电阻替代,所以在小功率场合应用比较少了,但在大功率场合,绕线电阻应用仍很广泛,像我们常说的水泥电阻,铝壳电阻都是用在大功率场合的绕线电阻,它们内部都是绕线,只是外部再封装了一次。

  水泥电阻:用耐火泥灌封的电阻器。水泥电阻器具有外形尺寸较大、耐震、耐湿、耐热及良好散热、低价格等特性,经常用作负载电阻。

  铝壳电阻:外壳采用铝合金(黄金铝壳)制造,表面具有散热沟槽,体积小功率大,耐高温,过载能力强具有耐气候性、高精度,标准低感应电阻,高稳定,强架构,其变通性佳多重组合选择,利于机械保护,方便安装使用。

  可分为普通电阻与精密电阻,一般精度要超过1%才会称为精密电阻,像0.1%的精密电阻。精密电阻对温度系数也有要求,因为温度系数也影响着最终的电阻值。

  第二种:数字+字母表示法,仅针对0603封装的E96电阻,更小封装的无标识,更大封装的用上述的4位数字表示,前两位数字01表示E96系列对应阻值的序号,如下表所示;第三位字母表示阻值放大缩小的倍数,如下表所示。